- 1. Точка x компактной римановой поверхности X рода g называется точкой Вейерштрасса, если на X существует непостоянная мероморфная функция f, голоморфная в $X\setminus\{x\}$ и с полюсом порядка не выше g в точке x. Найдите 12 точек Вейерштрасса на $X\subset\mathbb{P}^2$, заданной в однородных координатах уравнением $z_0^4+z_1^4+z_2^4=0$.
- **2.** Определите характеристическое многообразие дифференциального оператора $P=z\frac{\partial^2}{\partial z^2}+w\frac{\partial^2}{\partial z\partial w}+a\frac{\partial^2}{\partial w^2},$ где $a\in\mathbb{C}.$ Приведите пример решения уравнения Pf=0 с нетривиальной монодромией.
- **3.** Для комплексного числа τ с ненулевой мнимой частью рассмотрим тор $X=\mathbb{C}/(\mathbb{Z}+\tau\mathbb{Z})$. Для гладкой 1-формы $\psi=fdz+gd\bar{z}$ на X положим $M(\psi)=M(f)dz+M(g)d\bar{z}$, где

$$M(f) = \left(\int_X f(z) dz \wedge d\bar{z} \right) / \left(\int_X dz \wedge d\bar{z} \right).$$

Покажите, что если ψ является d-замкнутой, то $\psi - M(\psi)$ является d-точной.